krotov.convergence module¶
Routines for check_convergence in krotov.optimize.optimize_pulses()
A check_convergence function may be used to determine whether an optimization
is converged, and thus can be stopped before the maximum number of
iterations (iter_stop) is reached. A function suitable for
check_convergence must receive a Result
object, and return a value
that evaluates as True or False in a Boolean context, indicating whether the
optimization has converged or not.
The Result
object that the check_convergence function receives as
an argument will be up-to-date for the current iteration. That is, it will
already contain the current values from optimize_pulses()
’s info_hook
in Result.info_vals
, the current tau_vals
, etc. The
Result.optimized_controls
attribute will contain the current optimized
pulses (defined on the intervals of tlist
). The
check_convergence function should not modify the Result
object it
receives in any way. The proper place for custom modifications after each
iteration in optimize_pulses()
is through the info_hook routine.
It is recommended that a check_convergence function returns None (which is
False in a Boolean context) if the optimization has not yet converged. If the
optimization has converged, check_convergence should return a message string
(which is True in a Boolean context). The returned string will be included in
the final Result.message
.
A typical usage for check_convergence is ending the optimization when the
optimization functional falls below a specified limit. Such a
check_convergence function can be generated by value_below()
.
By default, this assumes that the info_hook passed to
optimize_pulses()
returns the value of the functional,
which is then stored in Result.info_vals
. Alternatively,
value_below()
could be told to look at the Result.tau_vals
.
Similarly, one might stop the optimization when there is an insufficient
improvement between iterations. The delta_below()
function generates a
check_convergence function for this purpose. Multiple convergence conditions
(“stop optimization when \(J_T\) reaches \(10^{-5}\), or if
\(\Delta J_T < 10^{-6}\)”) can be defined via Or()
.
While Krotov’s method is guaranteed to monotonically converge in the continuous
limit, this no longer strictly holds when time is discretized (in particular if
lambda_a
is too small). You can use
check_monotonic_error()
or check_monotonic_fidelity()
as a
check_convergence function that stops the optimization when monotonic
convergence is lost.
Summary¶
Data:
Or |
Chain multiple check_convergence functions together in a logical Or. |
check_monotonic_error |
Check for monotonic convergence with respect to the error |
check_monotonic_fidelity |
Check for monotonic convergence with respect to the fidelity |
delta_below |
Constructor for a routine that checks if \(\Abs{v_1 - v_0} < \varepsilon\) |
value_below |
Constructor for routine that checks if a value is below limit |
__all__
: Or
, check_monotonic_error
, check_monotonic_fidelity
, delta_below
, value_below
Reference¶
-
krotov.convergence.
Or
(*funcs)[source]¶ Chain multiple check_convergence functions together in a logical Or.
Each parameter must be a function suitable to pass to
optimize_pulses()
as check_convergence. It must receive aResult
object and should return None or a string message.Returns: A function check_convergence(result)
that returns the result of the first “non-passing” function in *funcs. A “non-passing” result is one that evaluates to True in a Boolean context (should be a string message)Return type: callable
-
krotov.convergence.
value_below
(limit, spec=('info_vals', T[-1]), name=None, **kwargs)[source]¶ Constructor for routine that checks if a value is below limit
Parameters: - limit (float or str) – A float value (or str-representation of a float)
against which to compare the value extracted from
Result
- spec – A
glom()
specification of theResult
attribute from which to extract the value to compare against limit. Defaults to a spec extracting the last value inResult.info_vals
. - name (str or None) – A name identifying the checked value, used for the
message returned by the check_convergence routine. Defaults to
str(spec)
. - **kwargs – Keyword arguments to pass to
glom()
Returns: A function
check_convergence(result)
that extracts the value specified by spec from theResult
object, and checks it against limit. If the value is below the limit, it returns an appropriate message string. Otherwise, it returns None.Return type: callable
Note
If you find
glom()
-specifications intimidating: A simple callable acting onResult
is also a valid spec. However, if you use a callable spec, make sure to pass an appropriate name.The spec in the following example is equivalent to the default
spec=('info_vals', glom.T[-1])
.Example
>>> check_convergence = value_below( ... limit='1e-4', ... spec=lambda r: r.info_vals[-1], ... name='J_T' ... ) >>> r = krotov.result.Result() >>> r.info_vals.append(1e-4) >>> check_convergence(r) # returns None >>> r.info_vals.append(9e-5) >>> check_convergence(r) 'J_T < 1e-4'
- limit (float or str) – A float value (or str-representation of a float)
against which to compare the value extracted from
-
krotov.convergence.
delta_below
(limit, spec1=('info_vals', T[-1]), spec0=('info_vals', T[-2]), absolute_value=True, name=None, **kwargs)[source]¶ Constructor for a routine that checks if \(\Abs{v_1 - v_0} < \varepsilon\)
Parameters: - limit (float or str) – A float value (or str-representation of a float) for \(\varepsilon\)
- spec1 – A
glom()
specification of theResult
attribute from which to extract \(v_1\). Defaults to a spec extracting the last value inResult.info_vals
. - spec0 – A
glom()
specification of theResult
attribute from which to extract \(v_0\). Defaults to a spec extracting the last-but-one value inResult.info_vals
. - absolute_value (bool) – If False, check for \(v_1 - v_0 < \varepsilon\), instead of the absolute value.
- name (str or None) – A name identifying the delta, used for the
message returned by the check_convergence routine. Defaults to
"Δ({spec1},{spec0}"
. - **kwargs – Keyword arguments to pass to
glom()
Note
You can use
delta_below()
to implement a check for strict monotonic convergence, e.g. when info_hook returns the optimization error, by flipping spec0 and spec1, setting limit to zero, and setting absolute_value to False. Seecheck_monotonic_error()
.Example
>>> check_convergence = delta_below(limit='1e-4', name='ΔJ_T') >>> r = krotov.result.Result() >>> r.info_vals.append(9e-1) >>> check_convergence(r) # None >>> r.info_vals.append(1e-1) >>> check_convergence(r) # None >>> r.info_vals.append(4e-4) >>> check_convergence(r) # None >>> r.info_vals.append(2e-4) >>> check_convergence(r) # None >>> r.info_vals.append(1e-6) >>> check_convergence(r) # None >>> r.info_vals.append(1e-7) >>> check_convergence(r) 'ΔJ_T < 1e-4'
-
krotov.convergence.
check_monotonic_error
(result)[source]¶ Check for monotonic convergence with respect to the error
Check that the last value in
Result.info_vals
is smaller than the last-but-one value. If yes, return None. If no, return an appropriate error message.This assumes that the info_hook passed to
optimize_pulses()
returns the value of the functional, which is then available inResult.info_vals
.Example
>>> r = krotov.result.Result() >>> r.info_vals.append(9e-1) >>> check_monotonic_error(r) # None >>> r.info_vals.append(1e-1) >>> check_monotonic_error(r) # None >>> r.info_vals.append(2e-1) >>> check_monotonic_error(r) 'Loss of monotonic convergence; error decrease < 0'
See also
Use
check_monotonic_fidelity()
for when info_hook returns a “fidelity”, that is, a measure that should increase in each iteration.
-
krotov.convergence.
check_monotonic_fidelity
(result)[source]¶ Check for monotonic convergence with respect to the fidelity
This is like
check_monotonic_error()
, but looking for a monotonic increase in the values inResult.info_vals
. Thus, it is assumed that the info_hook returns a fidelity, not an error.Example
>>> r = krotov.result.Result() >>> r.info_vals.append(0.0) >>> check_monotonic_fidelity(r) # None >>> r.info_vals.append(0.2) >>> check_monotonic_fidelity(r) # None >>> r.info_vals.append(0.15) >>> check_monotonic_fidelity(r) 'Loss of monotonic convergence; fidelity increase < 0'