Source code for krotov.objectives

import sys
import copy
import itertools
from functools import partial

import qutip
from qutip.solver import Result as QutipSolverResult
import numpy as np

from .structural_conversions import (
    _nested_list_shallow_copy,
    extract_controls,
    extract_controls_mapping,
    plug_in_pulse_values,
    control_onto_interval,
    discretize,
)

__all__ = [
    'Objective',
    'summarize_qobj',
    'CtrlCounter',
    'gate_objectives',
    'ensemble_objectives',
    'liouvillian',
]


FIX_QUTIP_932 = True
"""Workaround for `QuTiP issue 932`_.

If True, and only when running on macOS, in :meth:`Objective.mesolve`,
replace any array controls with an equivalent function. This results in a
signficant slowdown of the propagation, as it circumvents the use of Cython.

.. _QuTiP issue 932: https://github.com/qutip/qutip/issues/932
"""


def _adjoint(op):
    """Calculate adjoint of an operator in QuTiP nested-list format.
    Controls are not modified."""
    if isinstance(op, list):
        adjoint_op = []
        for item in op:
            if isinstance(item, list):
                assert len(item) == 2
                adjoint_op.append([item[0].dag(), item[1]])
            else:
                adjoint_op.append(item.dag())
        return adjoint_op
    elif op is None:
        return None
    else:
        return op.dag()


[docs]def CtrlCounter(): """Constructor for a counter of controls. Returns a callable that returns a unique integer (starting at 1) for every distinct control that is passed to it. This is intended for use with :func:`summarize_qobj`. Example: >>> ctrl_counter = CtrlCounter() >>> ctrl1 = np.zeros(10) >>> ctrl_counter(ctrl1) 1 >>> ctrl2 = np.zeros(10) >>> assert ctrl2 is not ctrl1 >>> ctrl_counter(ctrl2) 2 >>> ctrl_counter(ctrl1) 1 >>> ctrl3 = lambda t, args: 0.0 >>> ctrl_counter(ctrl3) 3 """ counter = 0 registry = {} def ctrl_counter(ctrl): nonlocal counter if isinstance(ctrl, np.ndarray): ctrl = id(ctrl) if ctrl not in registry: counter += 1 registry[ctrl] = counter return registry[ctrl] return ctrl_counter
_CTRL_COUNTER = CtrlCounter() #: internal counter for controls
[docs]class Objective: """A single objective for optimization with Krotov's method Args: initial_state (qutip.Qobj): value for :attr:`initial_state` H (qutip.Qobj or list): value for :attr:`H` target (qutip.Qobj or None): value for :attr:`target` c_ops (list or None): value for :attr:`c_ops` Attributes: H (qutip.Qobj or list): The (time-dependent) Hamiltonian, cf. :func:`qutip.mesolve.mesolve`. This includes the control fields. initial_state (qutip.Qobj): The initial state target: An object describing the "target" of the optimization, for the dynamics starting from :attr:`initial_state`. Usually, this will be the target state (the state into which :attr:`initial_state` should evolve). More generally, it can be an arbitrary object meeting the requirements of a specific `chi_constructor` function that will be passed to :func:`.optimize_pulses`. c_ops (list or None): List of collapse operators, cf. :func:`~qutip.mesolve.mesolve`. Raises: ValueError: If any arguments have an invalid type """ def __init__(self, *, initial_state, H, target, c_ops=None): if c_ops is None: c_ops = [] if not isinstance(H, (qutip.Qobj, list)): raise ValueError( "Invalid H, must be a Qobj, or a nested list, not %s" % H.__class__.__name__ ) self.H = H if not isinstance(initial_state, qutip.Qobj): raise ValueError( "Invalid initial_state: must be Qobj, not %s" % initial_state.__class__.__name__ ) self.initial_state = initial_state self.target = target if not isinstance(c_ops, list): raise ValueError( "Invalid c_ops: must be a list, not %s" % c_ops.__class__.__name__ ) self.c_ops = c_ops def __copy__(self): # When we use copy.copy(objective), we want a # semi-deep copy where nested lists in the Hamiltonian and the c_ops # are re-created (copy by value), but non-list elements are copied by # reference. return Objective( H=_nested_list_shallow_copy(self.H), initial_state=self.initial_state, target=self.target, c_ops=[_nested_list_shallow_copy(c) for c in self.c_ops], ) def __eq__(self, other): if other.__class__ is self.__class__: return (self.H, self.initial_state, self.target, self.c_ops) == ( other.H, other.initial_state, other.target, other.c_ops, ) else: return NotImplemented def __ne__(self, other): # pragma: nocover result = self.__eq__(other) if result is NotImplemented: return NotImplemented else: return not result @property def adjoint(self): """The :class:`Objective` containing the adjoint of all components. This does not affect the controls in :attr:`H`: these are assumed to be real-valued. Also, :attr:`.Objective.target` will be left unchanged if it is not a :class:`qutip.Qobj`. """ return Objective( H=_adjoint(self.H), initial_state=_adjoint(self.initial_state), target=( _adjoint(self.target) if isinstance(self.target, qutip.Qobj) else self.target ), c_ops=[_adjoint(op) for op in self.c_ops], )
[docs] def mesolve(self, tlist, rho0=None, e_ops=None, **kwargs): """Run :func:`qutip.mesolve.mesolve` on the system of the objective Solve the dynamics for the :attr:`H` and :attr:`c_ops` of the objective. If `rho0` is not given, the :attr:`initial_state` will be propagated. All other arguments will be passed to :func:`qutip.mesolve.mesolve`. Returns: qutip.solver.Result: Result of the propagation, see :func:`qutip.mesolve.mesolve` for details. """ if rho0 is None: rho0 = self.initial_state if e_ops is None: e_ops = [] H = self.H c_ops = self.c_ops if FIX_QUTIP_932 and sys.platform == "darwin": # pragma: no cover # "darwin" = macOS; the "pragma" excludes from coverage analysis controls = extract_controls([self]) pulses_mapping = extract_controls_mapping([self], controls) mapping = pulses_mapping[0] # "first objective" (dummy structure) H = _plug_in_array_controls_as_func(H, controls, mapping[0], tlist) c_ops = [ _plug_in_array_controls_as_func( c_op, controls, mapping[ic + 1], tlist ) for (ic, c_op) in enumerate(self.c_ops) ] return qutip.mesolve( H=H, rho0=rho0, tlist=tlist, c_ops=c_ops, e_ops=e_ops, **kwargs )
[docs] def propagate(self, tlist, *, propagator, rho0=None, e_ops=None): """Propagates the system of the objective over the entire time grid Solve the dynamics for the `H` and `c_ops` of the objective. If `rho0` is not given, the `initial_state` will be propagated. This is similar to the :meth:`mesolve` method, but instead of using :func:`qutip.mesolve.mesolve`, the `propagate` function is used to go between points on the time grid. This function is the same as what is passed to :func:`.optimize_pulses`. The crucial difference between this and :meth:`mesolve` is in the time discretization convention. While :meth:`mesolve` uses piecewise-constant controls centered around the values in `tlist` (the control field switches in the middle between two points in `tlist`), :meth:`propagate` uses piecewise-constant controls on the intervals of `tlist` (the control field switches on the points in `tlist`) Comparing the result of :meth:`mesolve` and :meth:`propagate` allows to estimate the "time discretization error". If the error is significant, a shorter time step shoud be used. Returns: qutip.solver.Result: Result of the propagation, using the same structure as :meth:`mesolve`. """ if e_ops is None: e_ops = [] result = QutipSolverResult() try: result.solver = propagator.__name__ except AttributeError: try: result.solver = propagator.__class__.__name__ except AttributeError: result.solver = 'n/a' result.times = np.array(tlist) result.states = [] result.expect = [] result.num_expect = len(e_ops) result.num_collapse = len(self.c_ops) for _ in e_ops: result.expect.append([]) state = rho0 if state is None: state = self.initial_state if len(e_ops) == 0: result.states.append(state) else: for (i, oper) in enumerate(e_ops): result.expect[i].append(qutip.expect(oper, state)) controls = extract_controls([self]) pulses_mapping = extract_controls_mapping([self], controls) mapping = pulses_mapping[0] # "first objective" (dummy structure) pulses = [ # defined on the tlist intervals control_onto_interval(discretize(control, tlist)) for control in controls ] for time_index in range(len(tlist) - 1): # index over intervals H = plug_in_pulse_values(self.H, pulses, mapping[0], time_index) c_ops = [ plug_in_pulse_values(c_op, pulses, mapping[ic + 1], time_index) for (ic, c_op) in enumerate(self.c_ops) ] dt = tlist[time_index + 1] - tlist[time_index] state = propagator( H, state, dt, c_ops, initialize=True, # initialize=(time_index == 0) ) if len(e_ops) == 0: result.states.append(state) else: for (i, oper) in enumerate(e_ops): result.expect[i].append(qutip.expect(oper, state)) result.expect = [np.array(a) for a in result.expect] return result
[docs] def summarize(self, ctrl_counter=None): """Return a one-line summary of the objective as a string Example: >>> from qutip import ket, tensor, sigmaz, sigmax, sigmap, identity >>> u1 = lambda t, args: 1.0 >>> u2 = lambda t, args: 1.0 >>> a1 = np.random.random(100) + 1j*np.random.random(100) >>> a2 = np.random.random(100) + 1j*np.random.random(100) >>> H = [ ... tensor(sigmaz(), identity(2)) + ... tensor(identity(2), sigmaz()), ... [tensor(sigmax(), identity(2)), u1], ... [tensor(identity(2), sigmax()), u2]] >>> C1 = [tensor(identity(2), sigmap()), a1] >>> C2 = [tensor(sigmap(), identity(2)), a2] >>> ket00 = ket((0,0)) >>> ket11 = ket((1,1)) >>> obj = Objective( ... initial_state=ket00, ... target=ket11, ... H=H ... ) >>> obj.summarize() '|(2⊗2)⟩ - {[Herm[2⊗2,2⊗2], [Herm[2⊗2,2⊗2], u1(t)], [Herm[2⊗2,2⊗2], u2(t)]]} - |(2⊗2)⟩' >>> obj = Objective( ... initial_state=ket00, ... target=ket11, ... H=H, ... c_ops=[C1, C2] ... ) >>> obj.summarize() '|(2⊗2)⟩ - {H:[Herm[2⊗2,2⊗2], [Herm[2⊗2,2⊗2], u1(t)], [Herm[2⊗2,2⊗2], u2(t)]], c_ops:([NonHerm[2⊗2,2⊗2], u3[complex128]],[NonHerm[2⊗2,2⊗2], u4[complex128]])} - |(2⊗2)⟩' """ if ctrl_counter is None: ctrl_counter = _CTRL_COUNTER if len(self.c_ops) == 0: res = "%s - {%s}" % ( summarize_qobj(self.initial_state, ctrl_counter), summarize_qobj(self.H, ctrl_counter), ) else: res = "%s - {H:%s, c_ops:(%s)}" % ( summarize_qobj(self.initial_state, ctrl_counter), summarize_qobj(self.H, ctrl_counter), ",".join( [summarize_qobj(c_op, ctrl_counter) for c_op in self.c_ops] ), ) if self.target is not None: if isinstance(self.target, qutip.Qobj): res += " - %s" % (summarize_qobj(self.target, ctrl_counter)) else: res += " - %r" % self.target return res
def __str__(self): return self.summarize() def __repr__(self): return "%s[%s]" % (self.__class__.__name__, self.summarize())
[docs] def __getstate__(self): """Return data for the pickle serialization of an objective. This may not preserve time-dependent controls, and is only to enable the serialization of :class:`.Result` objects. """ state = copy.copy(self.__dict__) # Remove the unpicklable entries. state['H'] = _remove_functions_from_nested_list(state['H']) state['c_ops'] = _remove_functions_from_nested_list(state['c_ops']) return state
class _ControlPlaceholder: """Placeholder for a control function, for pickling""" def __init__(self, id): self.id = id def __str__(self): return "u%s" % self.id def __repr__(self): return "%s(%s)" % (self.__class__.__name__, self.id) def __eq__(self, other): return (self.__class__ == other.__class__) and (self.id == other.id) def _remove_functions_from_nested_list(lst): if isinstance(lst, list): return [_remove_functions_from_nested_list(v) for v in lst] else: if callable(lst) and not isinstance(lst, qutip.Qobj): return _ControlPlaceholder(id(lst)) else: return lst def _plug_in_array_controls_as_func(H, controls, mapping, tlist): """Convert array controls to piece-wise constant functions It uses the piece-wise constant convention of mesolve: pulses switch in the middle between to `tlist` points. This is a workaround for https://github.com/qutip/qutip/issues/932 """ H = _nested_list_shallow_copy(H) T = tlist[-1] nt = len(tlist) for (control, control_mapping) in zip(controls, mapping): if isinstance(control, np.ndarray): for i in control_mapping: # Use the same formula that QuTiP normally passes to Cython for # compilation H[i][1] = partial(_array_as_func, array=control, T=T, nt=nt) else: continue return H def _array_as_func(t, args, array, T, nt): return ( 0 if (t > float(T)) else array[int(round(float(nt - 1) * (t / float(T))))] )
[docs]def summarize_qobj(obj, ctrl_counter=None): """Summarize a quantum object A counter created by :func:`CtrlCounter` may be passed to distinguish control fields. Example: >>> ket = qutip.ket([1, 0, 1]) >>> summarize_qobj(ket) '|(2⊗2⊗2)⟩' >>> bra = ket.dag() >>> summarize_qobj(bra) '⟨(2⊗2⊗2)|' >>> rho = ket * bra >>> summarize_qobj(rho) 'Herm[2⊗2⊗2,2⊗2⊗2]' >>> a = qutip.create(10) >>> summarize_qobj(a) 'NonHerm[10,10]' >>> S = qutip.to_super(a) >>> summarize_qobj(S) '[[10,10],[10,10]]' """ if ctrl_counter is None: ctrl_counter = _CTRL_COUNTER if isinstance(obj, list): return _summarize_qobj_nested_list(obj, ctrl_counter) elif callable(obj) and not isinstance(obj, qutip.Qobj): return 'u%d(t)' % ctrl_counter(obj) elif isinstance(obj, np.ndarray): return 'u%d[%s]' % (ctrl_counter(obj), obj.dtype.name) elif isinstance(obj, _ControlPlaceholder): return str(obj) elif isinstance(obj, (float, complex)): return str(obj) elif not isinstance(obj, qutip.Qobj): raise TypeError("obj must be a Qobj, not %s" % obj.__class__.__name__) if obj.type == 'ket': dims = "⊗".join(["%d" % d for d in obj.dims[0]]) return '|(%s)⟩' % dims elif obj.type == 'bra': dims = "⊗".join(["%d" % d for d in obj.dims[1]]) return '⟨(%s)|' % dims elif obj.type == 'oper': dim1 = "⊗".join(["%d" % d for d in obj.dims[0]]) dim2 = "⊗".join(["%d" % d for d in obj.dims[1]]) if obj.isherm: return 'Herm[%s,%s]' % (dim1, dim2) else: return 'NonHerm[%s,%s]' % (dim1, dim2) elif obj.type == 'super': dims = [] for dim in obj.dims: dim1 = "⊗".join(["%d" % d for d in dim[0]]) dim2 = "⊗".join(["%d" % d for d in dim[1]]) dims.append('[%s,%s]' % (dim1, dim2)) return '[' + ",".join(dims) + ']' else: raise NotImplementedError("Unknown qobj type: %s" % obj.type)
def _summarize_qobj_nested_list(lst, ctrl_counter): """Summarize a nested-list time-dependent quantum object""" return ( '[' + ", ".join([summarize_qobj(obj, ctrl_counter) for obj in lst]) + ']' ) def _reversed_enumerate(collection): # better than `reversed(list(enumerate(collection)))`, because it doesn't # create copies, via `list` return zip(reversed(range(len(collection))), reversed(collection)) def _rho1(basis_states): """State ρ₁ from the "3states" functional""" d = len(basis_states) # dimension of logical subspace return sum( [ (2 * (d - i) / (d * (d + 1))) * psi * psi.dag() for (i, psi) in enumerate(basis_states) # note that i is 0-based, unlike in the paper ] ) def _rho2(basis_states): """State ρ₂ from the "3states" functional""" d = len(basis_states) # dimension of logical subspace return (1.0 / d) * sum( [ psi_i * psi_j.dag() for (psi_i, psi_j) in itertools.product(basis_states, repeat=2) ] ) def _rho3(basis_states): """State ρ₃ from the "3states" functional""" d = len(basis_states) # dimension of logical subspace return (1.0 / d) * sum([psi * psi.dag() for psi in basis_states])
[docs]def gate_objectives( basis_states, gate, H, c_ops=None, local_invariants=False, liouville_states_set=None, weights=None, normalize_weights=True, ): r"""Construct a list of objectives for optimizing towards a quantum gate Args: basis_states (list[qutip.Qobj]): A list of $n$ canonical basis states gate: The gate to optimize for, as a $n \times n$ matrix-like object (must have a `shape` attribute, and be indexable by two indices). Alternatively, `gate` may be the string 'perfect_entangler' or 'PE', to indicate the optimization for an arbitrary two-qubit perfect entangler. H (list or qutip.Qobj): The Hamiltonian (or Liouvillian) for the time evolution, in nested-list format. c_ops (list or None): A list of collapse (Lindblad) operators, or None for unitary dynamics or if `H` is a Liouvillian (preferred!) local_invariants (bool): If True, initialize the objectives for an optimization towards a two-qubit gate that is "locally equivalent" to `gate`. That is, the result of the optimization should implement `gate` up to single-qubit operations. liouville_states_set (None or str): If not None, one of "full", "3states", "d+1". This sets the objectives for a gate optimization in Liouville space, using the states defined in Goerz et al. New J. Phys. 16, 055012 (2014). See Examples for details. weights (None or list): If given as a list, weights for the different objectives. These will be added as a custom attribute to the respective :class:`.Objective`, and may be used by a particular functional (`chi_constructor`). The intended use case is for the `liouville_states_set` values '3states', and 'd+1', where the different objectives have clear physical interpretations that might be given differing importance. A weight of 0 will completely drop the corresponding objective. normalize_weights (bool): If True, and if `weights` is given as a list of values, normalize the weights so that they sum to $N$, the number of objectives. IF False, the weights will be used unchanged. Returns: list[Objective]: The objectives that define the optimization towards the gate. For a "normal" gate with a basis in Hilbert space, the objectives will have the `basis_states` as each :attr:`~.Objective.initial_state` and the result of applying `gate` to the `basis_states` as each :attr:`~.Objective.target`. For an optimization towards a perfect-entangler, or for the `local_invariants` of the given `gate`, each :attr:`~.Objective.initial_state` will be the Bell basis state described in "Theorem 1" in Y. Makhlin, Quantum Inf. Process. 1, 243 (2002), derived from the canonical `basis_states`. The :attr:`~.Objective.target` will be the string 'PE' for a perfect-entanglers optimization, and `gate` for the local-invariants optimization. Raises: ValueError: If `gate`, `basis_states`, and `local_invariants` are incompatible, or `gate` is invalid (not a recognized string) .. Note:: The dimension of the `basis_states` is not required to be the dimension of the `gate`; the `basis_states` may define a logical subspace in a larger Hilbert space. Examples: * A single-qubit gate:: >>> from qutip import ket, bra, tensor >>> from qutip import sigmaz, sigmax, sigmay, sigmam, identity >>> basis = [ket([0]), ket([1])] >>> gate = sigmay() # = -i|0⟩⟨1| + i|1⟩⟨0| >>> H = [sigmaz(),[sigmax(), lambda t, args: 1.0]] >>> objectives = gate_objectives(basis, gate, H) >>> assert objectives == [ ... Objective( ... initial_state=basis[0], ... target=(1j * basis[1]), ... H=H ... ), ... Objective( ... initial_state=basis[1], ... target=(-1j * basis[0]), ... H=H ... ) ... ] * An arbitrary two-qubit perfect entangler: >>> basis = [ket(n) for n in [(0, 0), (0, 1), (1, 0), (1, 1)]] >>> H = [ ... tensor(sigmaz(), identity(2)) + ... tensor(identity(2), sigmaz()), ... [tensor(sigmax(), identity(2)), lambda t, args: 1.0], ... [tensor(identity(2), sigmax()), lambda t, args: 1.0]] >>> objectives = gate_objectives(basis, 'PE', H) >>> from weylchamber import bell_basis >>> for i in range(4): ... assert objectives[i] == Objective( ... initial_state=bell_basis(basis)[i], ... target='PE', ... H=H ... ) * A two-qubit gate, up to single-qubit operation ("local invariants"): >>> objectives = gate_objectives( ... basis, qutip.gates.cnot(), H, local_invariants=True ... ) >>> for i in range(4): ... assert objectives[i] == Objective( ... initial_state=bell_basis(basis)[i], ... target=qutip.gates.cnot(), ... H=H ... ) * A two-qubit gate in a dissipative system tracked by 3 density matrices:: >>> L = krotov.objectives.liouvillian(H, c_ops=[ ... tensor(sigmam(), identity(2)), ... tensor(identity(2), sigmam())]) >>> objectives = gate_objectives( ... basis, qutip.gates.cnot(), L, ... liouville_states_set='3states', ... weights=[20, 1, 1] ... ) The three states, for a system with a logical subspace of dimension $d$ with a basis $\{\ket{i}\}$, $i \in [1, d]$ are: .. math:: \Op{\rho}_1 &= \sum_{i=1}^{d} \frac{2 (d-i+1)}{d (d+1)} \ketbra{i}{i} \\ \Op{\rho}_2 &= \sum_{i,j=1}^{d} \frac{1}{d} \ketbra{i}{j} \\ \Op{\rho}_3 &= \sum_{i=1}^{d} \frac{1}{d} \ketbra{i}{i} The explicit form of the three states in this example is:: >>> assert np.allclose(objectives[0].initial_state.full(), ... np.diag([0.4, 0.3, 0.2, 0.1])) >>> assert np.allclose(objectives[1].initial_state.full(), ... np.full((4, 4), 1/4)) >>> assert np.allclose(objectives[2].initial_state.full(), ... np.diag([1/4, 1/4, 1/4, 1/4])) The objectives in this example are weighted (20/1/1):: >>> "%.5f" % objectives[0].weight '2.72727' >>> "%.5f" % objectives[1].weight '0.13636' >>> "%.5f" % objectives[2].weight '0.13636' >>> sum_of_weights = sum([obj.weight for obj in objectives]) >>> "%.1f" % sum_of_weights '3.0' * A two-qubit gate in a dissipative system tracked by $d + 1 = 5$ pure-state density matrices:: >>> objectives = gate_objectives( ... basis, qutip.gates.cnot(), L, ... liouville_states_set='d+1' ... ) The first four `initial_states` are the pure states corresponding to the Hilbert space basis >>> assert objectives[0].initial_state == qutip.ket2dm(ket('00')) >>> assert objectives[1].initial_state == qutip.ket2dm(ket('01')) >>> assert objectives[2].initial_state == qutip.ket2dm(ket('10')) >>> assert objectives[3].initial_state == qutip.ket2dm(ket('11')) The fifth state is $\Op{\rho}_2$ from '3states':: >>> assert np.allclose(objectives[4].initial_state.full(), ... np.full((4, 4), 1/4)) * A two-qubit gate in a dissipative system tracked by the full Liouville space basis:: >>> objectives = gate_objectives( ... basis, qutip.gates.cnot(), L, ... liouville_states_set='full' ... ) The Liouville space basis states are all the possible dyadic products of the Hilbert space basis:: >>> assert objectives[0].initial_state == ket('00') * bra('00') >>> assert objectives[1].initial_state == ket('00') * bra('01') >>> assert objectives[2].initial_state == ket('00') * bra('10') >>> assert objectives[3].initial_state == ket('00') * bra('11') >>> assert objectives[4].initial_state == ket('01') * bra('00') >>> assert objectives[5].initial_state == ket('01') * bra('01') >>> assert objectives[6].initial_state == ket('01') * bra('10') >>> assert objectives[7].initial_state == ket('01') * bra('11') >>> assert objectives[8].initial_state == ket('10') * bra('00') >>> assert objectives[9].initial_state == ket('10') * bra('01') >>> assert objectives[10].initial_state == ket('10') * bra('10') >>> assert objectives[11].initial_state == ket('10') * bra('11') >>> assert objectives[12].initial_state == ket('11') * bra('00') >>> assert objectives[13].initial_state == ket('11') * bra('01') >>> assert objectives[14].initial_state == ket('11') * bra('10') >>> assert objectives[15].initial_state == ket('11') * bra('11') """ if isinstance(gate, str): if gate.lower().replace(' ', '_') in ['pe', 'perfect_entangler']: return _gate_objectives_li_pe(basis_states, 'PE', H, c_ops) else: raise ValueError( "gate must be either a square matrix, or one of the strings " "'PE' or 'perfect_entangler', not '" + gate + "'" ) elif local_invariants: if not gate.shape == (4, 4): raise ValueError( "If local_invariants is True, gate must be a 4 × 4 matrix, " "not " + str(gate.shape) ) return _gate_objectives_li_pe(basis_states, gate, H, c_ops) # "Normal" gate: if not gate.shape[0] == gate.shape[1] == len(basis_states): raise ValueError( "gate must be a matrix of the same dimension as the number of " "basis states" ) mapped_basis_states = [ sum([gate[i, j] * basis_states[i] for i in range(gate.shape[0])]) for j in range(gate.shape[1]) ] if liouville_states_set is None: # standard gate in Hilbert space initial_states = basis_states target_states = mapped_basis_states elif liouville_states_set.lower() == 'full': initial_states = [ psi_i * psi_j.dag() for (psi_i, psi_j) in itertools.product(basis_states, repeat=2) ] target_states = [ psi_i * psi_j.dag() for (psi_i, psi_j) in itertools.product( mapped_basis_states, repeat=2 ) ] elif liouville_states_set.replace(" ", "").lower() == '3states': d = len(basis_states) # dimension of logical subspace initial_states = [ _rho1(basis_states), _rho2(basis_states), _rho3(basis_states), ] target_states = [ _rho1(mapped_basis_states), _rho2(mapped_basis_states), _rho3(mapped_basis_states), ] elif liouville_states_set.replace(" ", "").lower() == 'd+1': d = len(basis_states) initial_states = [ basis_states[i] * basis_states[i].dag() for i in range(d) ] initial_states.append(_rho2(basis_states)) target_states = [ mapped_basis_states[i] * mapped_basis_states[i].dag() for i in range(d) ] target_states.append(_rho2(mapped_basis_states)) else: raise ValueError( "Invalid `liouville_states_set`: %s" % liouville_states_set ) objectives = [ Objective( initial_state=initial_state, target=target_state, H=H, c_ops=c_ops ) for (initial_state, target_state) in zip(initial_states, target_states) ] # apply weights if weights is not None: if len(weights) != len(objectives): raise ValueError( "If weight are given, there must be a weight for each " "objective" ) if normalize_weights: N = len(objectives) weights = N * np.array(weights) / np.sum(weights) for (i, weight) in _reversed_enumerate(weights): weight = float(weight) if weight < 0: raise ValueError("weights must be greater than zero") objectives[i].weight = weight if weight == 0: del objectives[i] return objectives
def _gate_objectives_li_pe(basis_states, gate, H, c_ops): """Objectives for two-qubit local-invariants or perfect-entangler optimizaton""" if len(basis_states) != 4: raise ValueError( "Optimization towards a two-qubit gate requires 4 basis_states" ) # Bell states as in "Theorem 1" in # Y. Makhlin, Quantum Inf. Process. 1, 243 (2002) psi1 = (basis_states[0] + basis_states[3]) / np.sqrt(2) psi2 = (1j * basis_states[1] + 1j * basis_states[2]) / np.sqrt(2) psi3 = (basis_states[1] - basis_states[2]) / np.sqrt(2) psi4 = (1j * basis_states[0] - 1j * basis_states[3]) / np.sqrt(2) return [ Objective(initial_state=psi, target=gate, H=H, c_ops=c_ops) for psi in [psi1, psi2, psi3, psi4] ]
[docs]def ensemble_objectives(objectives, Hs): """Extend `objectives` for an "ensemble optimization" This creates a list of objectives for an optimization for robustness with respect to variations in some parameter of the Hamiltonian. The trick is to simply optimize over the average of multiple copies of the system (the `Hs`) sampling that variation. See Goerz, Halperin, Aytac, Koch, Whaley. Phys. Rev. A 90, 032329 (2014) for details. Args: objectives (list[Objective]): The $n$ original objectives Hs (list): List of $m$ variations of the original Hamiltonian/Liouvillian Returns: list[Objective]: List of $n (m+1)$ new objectives that consists of the original objectives, plus one copy of the original objectives per element of `Hs` where the `H` attribute of each objectives is replaced by that element. """ new_objectives = copy.copy(objectives) for H in Hs: for obj in objectives: new_objectives.append( Objective( H=H, initial_state=obj.initial_state, target=obj.target, c_ops=obj.c_ops, ) ) return new_objectives
[docs]def liouvillian(H, c_ops): """Convert Hamiltonian and Lindblad operators into a Liouvillian. This is like :func:`qutip.superoperator.liouvillian`, but `H` may be a time-dependent Hamiltonian in nested-list format. `H` is assumed to contain a drift Hamiltonian, and the Lindblad operators in `c_ops` cannot be time-dependent. """ if isinstance(H, qutip.Qobj): return qutip.liouvillian(H, c_ops) elif isinstance(H, list): res = [] for spec in H: if isinstance(spec, qutip.Qobj): res.append(qutip.liouvillian(spec, c_ops)) c_ops = [] else: res.append([qutip.liouvillian(spec[0]), spec[1]]) assert len(c_ops) == 0, "No drift Hamiltonian" return res else: raise ValueError( "H must either be a Qobj, or a time-dependent Hamiltonian in " "nested-list format" )