Pseudocode for Krotov’s Method

Michael Goerz
(Dated: October 10, 2019)

For reference, Algorithm 1 shows the complete pseu-
docode of an optimization with Krotov’s method, as
implemented in the krotov package (https://github.
com/qucontrol/krotov).

Variables are color coded. Scalars are set in blue, e.g.
6;2). States (Hilbert space states or vectorized density
matrices) are set in purple, e.g. @”“t They may be
annotated with light gray superscripts to indicate the
iteration-index 7 of the control under which state was
propagated, and with light gray time arguments. These
annotations serve only to connect the variables to the

equations of motion: ¢, and ¢, are the same
variable ¢. Operators acting on states are set in green,
e.g. lkn- These may be implemented as a sparse matrix
or implicitly as a function that returns the result of ap-
plying the operator to a state. Lastly, storage arrays are
set in red, e.g. ®¢. Each element of a storage array is a
state.

The Python implementation groups several of the al-
gorithm’s input parameters by introducing a list of N
“objectives”. The objectives are indexed by k, and each
objective contains the initial state ¢"*, the Hamiltonian
or Liouvillian Hy to be used by the propagator U and for
the operators px,, and possibly a “target” to be taken
into account by the function x. In many applications,
Hjy = H is the same in all objectives, and ., = p; if H
is linear in the controls in addition.

The CPU resources required for the optimization are
dominated by the time propagation (calls to the function
U in lines 7, 24 37). This is under the assumption that
evaluating U dominates the application of the operator

Mikn to the state ¢, and the evaluation of the

inner product of two states, lines 31, 34. This condition
is fulfilled for any non-trivial Hilbert space dimension.

Loops over the index k are parallelizable, in particu-
lar in a shared-memory (multi-threaded) parallelization
environment like OpenMP. In a (multi-process) method-
passing environment like MPI, some care must be taken
to minimize communication overhead from passing large
state vectors. For some (but not all) functionals, inter-
process communication can be reduced to only the scalar
values constituting the sum over % in lines 31, 34.

The memory requirements of the algorithm are dom-
inated by the storage arrays ®,, ®;, and X. Each of
these must store N(Np + 1) full state vectors (a full time
propagation for each of the N objectives). Each state
vector is typically an array of double-precision complex
numbers. For a Hilbert space dimension d, a state vec-
tor thus requires 16d bytes of memory, or 16d? bytes
for a density matrix. Under certain conditions, the use
of &y and P, can be avoided: both are required only
when the second order update is used (o(t) # 0). When
the first order update is sufficient, ®; may overwrite ®(
so that the two collapse into a single forward-storage
®. The states stored in ® are only used for the inho-
mogeneity 9¢,/0 (¢r| in Eq. (3), and no storage ¢ of
forward-propagated states at all is required if g, = 0.
Thus, in most examples, only the storage X of the
backward-propagated states remains. In principle, if the
time propagation U is unitary (i.e., invertible), the states
stored in X could be recovered by forward-propagation

of {x, }, eliminating X at the (considerable)
runtime cost of an additional time propagation.

Optimization Functional and Equations of Motion

T (0)y el ()] = Jr({lo))

gt ’¢(i)(t)> -

% ’xg_l)(t)>

with

+z/ ale

i

__H®
h

0

hHw 1) ’X(z D)>+ gb

‘x“ D(p >> _ dJr

T .
)t + / w({o()}) at (1)

o (1)) (2)

9 <¢k| (i—1)

T 3|y

https://github.com/qucontrol/krotov
https://github.com/qucontrol/krotov

Algorithm 1 KroTOV’S METHOD FOR QUANTUM OPTIMAL CONTROL

Input:

AN

7.
8.

list of guess control values {652) } where 6;2) is the value of the I’th control field on the n’th interval of the propagation
time grid (to = 0,...,tny = T), ie., € = €' (£,) with T = tn + ((tng1 — tn)/2)

list of update-shape values {S;,} with each S;, € [0, 1]

list of update step size values {\a;}

list of N initial states {¢}"''} at t =ty = 0

propagator function U that in “forward mode” receives a state ¢, and a list of control values {€;,} and returns
o by solving the differential equation (2), respectively in “backward mode” (indicated as U') receives a state
Xk and returns y;, by solving the differential equation (3)

i where Hy, is the right-hand-side of the equation of motion of ¢5.(1), up to a factor of

list of operators i, = %
in

(=i/h), cf. Eq. (2);
function x that receives a list of states {¢, (7)} and returns a list of states {x, (7)} according to Eq. (4);

optionally, if a second order construction of the pulse update is necessary: function o(t).

Output: optimized control values {¢°""'}, such that J[{el(;ipw}] < J[{egs) }, with J defined in Eq. (1).

10:

1
2
3
4
5:
64
7
8
9

11:

in

. procedure KROTOVOPTIMIZATION({e\ "'}, {Si}, { Ao}, {67}, U, {purn}, X, o)

140 > iteration number
allocate forward storage array ®o[1...N,0... N7]

for k+1,...,N do > initial forward-propagation

q)o[k, 0] < ok — ¢'}3)it,
forn(;]‘a"'aNTdO

Dok, n] < @), — U(g, ; Ez(:?}) > propagate and store
end for

end for
while not converged do > optimization loop

iitl A
@1, {e!”} + KROTOVITERATION(®o, {e\" },...)
Py +— Dy

end while _
VI,V e) > final optimized controls

: end procedure

17: procedure KROTOVITERATION(®o, {e\" Y, {Si,}, {hai}, {68}, U, {pnn}, X, 0)

18:

19:

20:
21:

22:
23:
24:
25:

26:
27:
28:
29:

30:
31:
32:
33:
34:

35:
36:

37:

38:

39:
40:

41:
42:

VEk : ¢k — (I)Q[k‘,NT]

e e x({oy 3] > backward boundary condition

allocate backward storage array X[1...N,0...Nr].
for K+ 1,...,N do

X[k‘, NT] < X

for n < Nr,...,1do , > backward-propagate and store
X[k,n—1] & x; = U etV 20)

end for

end for

allocate forward storage array ®1[1...N,0... Np]

Yk : &1k, 0] < &, — it

forn<+1,...,Nr do > sequential update loop

VE X, — X[k,n—1]
Vi A€, % ImY>, (x; | ik | @5,) > first order
if o(t) # 0 then > second order
VEk : Ag, “— ¢y — Polk,n — 1]
Vi Aein + Aer + 5L I S, Lo(l)(Ady |t1n|),)
end if o
Vi : 6;:3 — 61(:1) + Ae€in > apply update
VEk: &1k, n] < ¢, — U(g, :{51(:1)}) > propagate and store

end for

if o(t) # 0 then
Update internal parameters of o(t) if necessary

end if
end procedure

Notes:

e The index k& numbers the independent states to be propagated, respectively the independent “objectives” (see
text for details), [numbers the independent control fields, and n numbers the intervals on the time grid.

e The optimization loop may be stopped if the optimization functional or the change of functional falls below a
pre-defined threshold, a maximum number of iterations is reached, or any other criterion.

e The braket notation in lines 31 indicates the (Hilbert-Schmidt) inner product of the state x, and

the state resulting from applying (. to ¢, . In Hilbert space, this is the standard braket. In Liouville
space, it is tr (XkT [hlkn [gbk]) with density matrices xi, ¢ and a super-operator fijx,.

e For numerical stability, the states x, in line 19 may be normalized. This norm then has to taken into
account in the pulse update, line 31.

e In line 24, the storage array @ is passed to Ut only to account for the inhomogeneity due to a possible state-
dependent constraint, dgy/0 (¢| in Eq. (3). If g» = 0, the parameter can be omitted.

	Optimization Functional and Equations of Motion

