
Pseudocode for Krotov’s Method

Michael Goerz
(Dated: December 11, 2019)

For reference, Algorithm 1 shows the complete pseu-
docode of an optimization with Krotov’s method, as
implemented in the krotov package (https://github.
com/qucontrol/krotov).

Variables are color coded. Scalars are set in blue, e.g.

ε
(0)
ln . States (Hilbert space states or vectorized density

matrices) are set in purple, e.g. φinitk . They may be
annotated with light gray superscripts to indicate the
iteration-index i of the control under which state was
propagated, and with light gray time arguments. These
annotations serve only to connect the variables to the

equations of motion: φ
(0)
k (tn) and φ

(0)
k (tn−1) are the same

variable φk. Operators acting on states are set in green,
e.g. µlkn. These may be implemented as a sparse matrix
or implicitly as a function that returns the result of ap-
plying the operator to a state. Lastly, storage arrays are
set in red, e.g. Φ0. Each element of a storage array is a
state.

The Python implementation groups several of the al-
gorithm’s input parameters by introducing a list of N
“objectives”. The objectives are indexed by k, and each
objective contains the initial state φinitk , the Hamiltonian
or Liouvillian Hk to be used by the propagator U and for
the operators µlkn, and possibly a “target” to be taken
into account by the function χ. In many applications,
Hk ≡ H is the same in all objectives, and µlkn ≡ µl if H
is linear in the controls in addition. The subscript n and

the superscript (i−1) for µ
(i−1)
lkn in lines 31, 34 comes into

play only if H is not linear in the control. Mathemat-
ically, µlkn would then have to be evaluated using the
updated control. Since the update is not yet known, the
guess control may be used as an approximation (valid for
sufficiently large λa,l).

The CPU resources required for the optimization are
dominated by the time propagation (calls to the function

U in lines 7, 24 37). This is under the assumption that
evaluating U dominates the application of the operator

µ
(i−1)
lkn to the state φ

(i)
k (tn−1) and the evaluation of the

inner product of two states, lines 31, 34. This condition
is fulfilled for any non-trivial Hilbert space dimension.

Loops over the index k are parallelizable, in particu-
lar in a shared-memory (multi-threaded) parallelization
environment like OpenMP. In a (multi-process) method-
passing environment like MPI, some care must be taken
to minimize communication overhead from passing large
state vectors. For some (but not all) functionals, inter-
process communication can be reduced to only the scalar
values constituting the sum over k in lines 31, 34.

The memory requirements of the algorithm are dom-
inated by the storage arrays Φ0, Φ1, and X. Each of
these must store N(NT +1) full state vectors (a full time
propagation for each of the N objectives). Each state
vector is typically an array of double-precision complex
numbers. For a Hilbert space dimension d, a state vec-
tor thus requires 16d bytes of memory, or 16d2 bytes
for a density matrix. Under certain conditions, the use
of Φ0 and Φ1 can be avoided: both are required only
when the second order update is used (σ(t) 6= 0). When
the first order update is sufficient, Φ1 may overwrite Φ0

so that the two collapse into a single forward-storage
Φ. The states stored in Φ are only used for the inho-
mogeneity ∂gb/∂ 〈φk| in Eq. (3), and no storage Φ of
forward-propagated states at all is required if gb ≡ 0.
Thus, in most examples, only the storage X of the
backward-propagated states remains. In principle, if the
time propagation U is unitary (i.e., invertible), the states
stored in X could be recovered by forward-propagation

of {χ(i−1)
k (t = 0)}, eliminating X at the (considerable)

runtime cost of an additional time propagation.

Optimization Functional and Equations of Motion

J [{|φ(i)k (t)〉}, {ε(i)l (t)}] = JT ({|φ(i)k (T)〉}) +
∑
l

∫ T

0

ga(ε
(i)
l (t)) dt+

∫ T

0

gb({φ(i)k (t)}) dt (1)

∂

∂t

∣∣∣φ(i)k (t)
〉

= − i

h̄
Ĥ(i)(t)

∣∣∣φ(i)k (t)
〉

(2)

∂

∂t

∣∣∣χ(i−1)
k (t)

〉
= − i

h̄
Ĥ† (i−1)(t)

∣∣∣χ(i−1)
k (t)

〉
+

∂gb
∂ 〈φk|

∣∣∣∣
(i−1)

(3)

with
∣∣∣χ(i−1)

k (T)
〉

= − ∂JT
∂ 〈φk(T)|

∣∣∣∣
(i−1)

(4)

https://github.com/qucontrol/krotov
https://github.com/qucontrol/krotov

2

Algorithm 1 Krotov’s Method for Quantum Optimal Control

Input:

1. list of guess control values {ε(0)ln } where ε
(0)
ln is the value of the l’th control field on the n’th interval of the propagation

time grid (t0 = 0, . . . , tNT = T), i.e., ε
(0)
ln ≡ ε

(0)
l (t̃n−1) with n ∈ [1, NT] and t̃n ≡ (tn + tn+1)/2

2. list of update-shape values {Sln} with each Sln ∈ [0, 1]

3. list of update step size values {λa,l}
4. list of N initial states {φinit

k } at t = t0 = 0

5. propagator function U that in “forward mode” receives a state φk(tn) and a list of control values {εln} and returns
φk(tn+1) by solving the differential equation (2), respectively in “backward mode” (indicated as U†) receives a state
χk(tn) and returns χk(tn−1) by solving the differential equation (3)

6. list of operators µlkn = ∂Hk
∂εl(t)

∣∣
εln

, where Hk is the right-hand-side of the equation of motion of φk(t), up to a factor

of (−i/h̄), cf. Eq. (2)

7. function χ that receives a list of states {φk(T)} and returns a list of states {χk(T)} according to Eq. (4)

8. optionally, if a second order construction of the pulse update is necessary: function σ(t)

Output: optimized control values {ε(opt)ln }, such that J [{ε(opt)ln }] ≤ J [{ε(0)ln }], with J defined in Eq. (1).

1: procedure KrotovOptimization({ε(0)ln }, {Sln}, {λa,l}, {φ
init
k }, U , {µlkn}, χ, σ)

2: i← 0 . iteration number
3: allocate forward storage array Φ0[1 . . . N, 0 . . . NT]
4: for k ← 1, . . . , N do . initial forward-propagation

5: Φ0[k, 0]← φ
(0)
k (t0)← φinit

k

6: for n← 1, . . . , NT do

7: Φ0[k, n]← φ
(0)
k (tn)← U(φ

(0)
k (tn−1), {ε(0)ln }) . propagate and store

8: end for
9: end for

10: while not converged do . optimization loop
11: i← i+ 1
12: Φ1, {ε(i)ln } ← KrotovIteration(Φ0, {ε(i−1)

ln }, . . .)
13: Φ0 ← Φ1

14: end while
15: ∀l,∀n : ε

(opt)
ln ← ε

(i)
ln . final optimized controls

16: end procedure

17: procedure KrotovIteration(Φ0, {ε(i−1)
ln }, {Sln}, {λa,l}, {φinit

k }, U , {µlkn}, χ, σ)

18: ∀k : φ
(i−1)
k (T)← Φ0[k,NT]

19: {χ(i−1)
k (T)} ← χ({φ(i−1)

k (T)}) . backward boundary condition
20: allocate backward storage array X[1 . . . N, 0 . . . NT].
21: for k ← 1, . . . , N do

22: X[k,NT]← χ
(i−1)
k (T)

23: for n← NT , . . . , 1 do . backward-propagate and store

24: X[k, n− 1]← χ
(i−1)
k (tn−1)← U†(χ

(i−1)
k (tn), {ε(i−1)

ln },Φ0)
25: end for
26: end for
27: allocate forward storage array Φ1[1 . . . N, 0 . . . NT]

28: ∀k : Φ1[k, 0]← φ
(i)
k (t0)← φinit

k

29: for n← 1, . . . , NT do . sequential update loop

30: ∀k : χ
(i−1)
k (tn−1)← X[k, n− 1]

31: ∀l : ∆εln ← Sln
λa,l

Im
∑
k

〈
χ
(i−1)
k (tn−1)

∣∣µ(i−1)
lkn

∣∣φ(i)
k (tn−1)

〉
. first order

32: if σ(t) 6= 0 then . second order

33: ∀k : ∆φ
(i)
k (tn−1)← φ

(i)
k (tn−1)− Φ0[k, n− 1]

34: ∀l : ∆εln ← ∆εln + Sln
λa,l

Im
∑
k

1
2
σ(t̃n)

〈
∆φ

(i)
k (tn−1)

∣∣µ(i−1)
lkn

∣∣φ(i)
k (tn−1)

〉
35: end if
36: ∀l : ε

(i)
ln ← ε

(i−1)
ln + ∆εln . apply update

37: ∀k : Φ1[k, n]← φ
(i)
k (tn)← U(φ

(i)
k (tn−1), {ε(i)ln }) . propagate and store

38: end for
39: if σ(t) 6= 0 then
40: Update internal parameters of σ(t) if necessary
41: end if
42: end procedure

3

Notes:

• The index k numbers the independent states to be propagated, respectively the independent “objectives” (see
text for details), l numbers the independent control fields, and n numbers the intervals on the time grid. All of
these indices start at 1.

• The optimization loop may be stopped if the optimization functional or the change of functional falls below a
pre-defined threshold, a maximum number of iterations is reached, or any other criterion.

• The braket notation in line 31 indicates the (Hilbert-Schmidt) inner product of the state χ
(i−1)
k (tn − 1) and the

state resulting from applying µ
(i−1)
lkn to φ

(i)
k (tn−1). In Hilbert space, this is the standard braket. In Liouville

space, it is tr
(
χk
† µlkn[φk]

)
with density matrices χk, φk and a super-operator µlkn.

• For numerical stability, the states χ
(i−1)
k (T) in line 19 may be normalized. This norm then has to taken into

account in the pulse update, line 31.

• In line 24, the storage array Φ0 is passed to U† only to account for the inhomogeneity due to a possible state-
dependent constraint, ∂gb/∂ 〈φk| in Eq. (3). If gb ≡ 0, the parameter can be omitted.

	Optimization Functional and Equations of Motion

